

Functional Ink Systems for "In Mold Electronics"

The Next Generation Human-Machine Interfaces

Microcircuit Materials

DuPont Has Evolved Over Two Centuries

OUPONT

Electronics & Imaging Advanced Materials

Business Development: Science + Market Needs → Innovation

Microcircuit Materials Traditional Business

Over **50 years of experience** in the development, manufacture and sale of specialized "Thick Film Compositions" (Pastes / Inks) for the Printed Electronics Industry

Core **Technologies:**

Fine Powders

Ceramic Science

Glass Science

Coating Technology

Polymer Science

Photopolymer Technology

Dispersions

Rheology

Tape Casting

Products:

High & Low **Temperature Screen Printable** Pastes:

- Conductors
- Resistors
- Dielectrics

Applications Major Traditional

Automotive

Automotive Interiors History – Past

Automotive Interiors History – Recent

Automotive Interiors History – Present

Mechanical Controls

Solid State Controls

OUPONT >

Automotive Interiors History – Future

Actually there is however a major limitation:

PCBs are flat & rigid constraining the design options and the intelligent function effectiveness...

What if I could encapsulate intelligence and functionality directly into 3D surfaces?

Example: HMI Control Panel

Traditional Design Example

Surface plastics (Foil visual finish and molded plastic)

Flex for capacitive switch

Light pipes

Full width rigid PCB

Design Properties

- Assembly depth: 25+ mm
- Numerous components
- Multiple manual assembly processes
- Complex electrical connections
- Mature technologies

Surface Encapsulated Design Example

Foil with visual finish

Printed circuitry, SMD LEDs and ICs on IML foil

Injection-molded plastic

Design Properties

- Wall thickness: ~3 mm
- 50-70% weight reduction
- Sensors in surface structure
- Environmentally-protected electronics
- Consolidated electrical connections
- Single-component solution

OUPONT

Example: Overhead Console

Before (mechanical button)

After (capacitive touch)

	Conventional assembly	IME version	Differences
Weight	650 g	150 g	77% lighter
Assembly depth	45 mm	3 mm (un-form)	93% less depth
Mechanical parts	64 parts	2	96% less parts
PCBA size (*DP estimate)	10 x 4 cm	10 x 3 cm	25% smaller area

Intelligent Surfaces Potential

Integration of:

- Electronic circuits: Electrical connections, shielding, etc...
- Interfaces: Capacitive switches, curved touch surfaces etc...
- Sensors: Antennas, proximity and gesture detectors, etc...
- Electronic components: LEDs, ICs, etc...
- Screens: OLEDs...?

OUPONT

The Ready To Use Solution

Introducing "In Mold Electronics"

IME in 3 Basic Steps

In Mold Electronics refers to Printed Electronic Circuitry on a polymer film substrate which successively undergoes a thermoforming and an injection moulding process. The circuit remains functional as the conducting tracks contour the 3D shape.

This technology is an extension and addition to IMD / FIM (In Mold Decoration /Film Insert Moulding) with base technology from the 1990's. It combines films, graphics and electronics to form a 3D aesthetical, functional, fully integrated part

OUPONT

IME – Typical Manufacturing Process

IME Benefits

Versatile technology with features that lead to immediate benefits

Up To 70% Lighter Elimination of mechanical buttons, sliders and wires. IME part can be as slim as 2mm thick!

Highly Touch Sensitive Capacitive switches are printed directly on device surface

New Design Freedom

Enable 3D modern Smart Surfaces design with continuous surfaces

Up To 40% Assembly Time Reduction

Switches, LEDs and components embedded in structure significantly reduced parts for assembly

Durability

Injection molded part protects components from vibration and environment

Up To 30% Less Cost Simpler and more efficient production

< DUPONT >

Enabling Technology

Why has this not been possible before and how is this achieved now?

silver ink

Conventional printed electronics Ag Paste

17

Through the developments of new, specially formulated functional inks

Paste / Inks Constituents

Key elements of a polymeric IME paste composition

IME functional ink

Copyright DuPont 2019

IME Product Portfolio – Dielectrics

Silver Conductor

ME602 - PC friendly & for over-printing on graphic inksME603 - PC compatible & improved Ag show-throughME101 - For RFID Antenna, NFC enable (reduced elongation)

Conductive Adhesive

ME902 - For attach component, thermoformable, good adhesion

 CDE
 GHIJKLMNOPQRSTUVWXYZ (123)

 GHIJKLMNOPQRSTUVWXYZ (123)
 567

 GHIKLMNOPQRSTUVWXYZ (123)
 567

 SGY
 2 0123456789 ABCDEFGHIJKL MNO

 NO
 QRSTUVWXYZ 0123456789 A 3CD

 CDE
 GHIJKLMNOPQRSTUVWXYZ (123)

 G7E
 9 ABCDEFGHIJKLMNOPQRSTUVWXYZ (123)

Transparent Conductor

ME801 - Good conductivity, high light transmission >90%

Carbon Conductor

ME201 - Overprint for connectors & to inhibit Ag migration

IME Product Portfolio – Dielectrics

Protection Encapsulant

ME772 - White Over-print protection – solvent based
 ME780 - Clear Over-print protection – solvent based, good abrasion with UV protection

Crossover Dielectric

ME778 - Reduced pinhole, stable BDV at elongation ME779 - Wide process window (oven or belt drier)

DuPont IME Active Collaborations

To provide an IME solution to the Industry from paste to final functional device - we know there are challenges related to materials and processes:

Collaboration with technology leaders and specialized innovators is therefore essential

Printing

• Pröll - Graphic Inks

Thermoforming

• Niebling - High Pressure

Solutions & Know-How

• Various companies - specializing in IME

Application Development Resource

 Holst Centre – Hybrid Printed Electronics cluster WP7 Platform (In Mould Electronics)

IME – Summary / Conclusions

Versatile technology

 In Mold Electronics is ideally suited to quickly develop "intelligent surface" solutions by fitting existing IMD / FIM products and processes

Novel dedicated ink technology and complete suite of materials

 New functional ink chemistries for conductors, dielectrics, carbons and adhesives complying with the typical IMD / FIM substrates, stretching and thermal / mechanical process conditions

Robust and reliable technology and products

• Proved environmental test performance and thermal cycling resistance

Ongoing technical work

- New generation of improved conductors and dielectrics
- Layers stack up design
- · Generation of additional reliability data

© 2019 DuPont. All rights reserved. DuPont[™], the DuPont Oval Logo, and all trademarks and service marks denoted with [™], SM or ® are owned by affiliates of DuPont de Nemours, Inc. unless otherwise noted. Nothing contained herein shall be construed as a representation that any recommendations, use or resale of the product or process described herein is permitted and complies with the rules or regulations of any countries, regions, localities, etc., or does not infringe upon patents or other intellectual property rights of third parties.

The information provided herein is based on data DuPont believes to be reliable, to the best of its knowledge and is provided at the request of and without charge to our customers. Accordingly, DuPont does not guarantee or warrant such information and assumes no liability for its use. If this product literature is translated, the original English version will control and DuPont hereby disclaims responsibility for any errors caused by translation. This document is subject to change without further notice.